- IN51C-0195: Characterization of Strike-Slip Fault Offsets Using Deep Learning and Simulated Topographic Data
-
Board 0195‚ Hall EFG (Poster Hall)NOLA CC
Author(s):Generic 'disconnected' Message
Jules Bourcier, Institut des Sciences de la Terre (First Author, Presenting Author)
Sarah Visage, Sapienza University of Rome
Sofia Goncalves, Institut des Sciences de la Terre
Sarah Perrinel, Institut des Sciences de la Terre
Margaux Mouchené, Institut des Sciences de la Terre
Léa Pousse Beltran, Institut des Sciences de la Terre
Sophie Giffard-Roisin, Institut des Sciences de la Terre
We present a deep learning approach for automatically quantifying strike-slip fault offsets from high-resolution topographic data. Traditional offset measurements require extensive manual or semi-automatic analyses, which can be time-consuming and inconsistent. To address data scarcity, we generate a semi-synthetic dataset by simulating faulting and landscape evolution, enabling effective pretraining of our neural network. A simulated-to-real transfer learning strategy improves offset prediction accuracy and more closely matches semi-automatic measurements compared to models trained only on real data. These findings show promise for efficient, automated fault characterization.
Scientific DisciplineSuggested ItinerariesNeighborhoodType
Enter Note
Go to previous page in this tab
Session
